Abstract
Currently, cancer accounts for nearly 1 of every 4 deaths in the United States which rates it as the second most common cause of death in the US, exceeded only by heart diseases. The detection, prevention and treatment of these death-causing diseases have necessitated and led to the development of novel tools for interfacing with single live cells –intracellular cell physiology. A major challenge, preventing the realization of effective and efficient intracellular physiology, is the lack of minimally invasive, nanoscale electrodes capable of probing cells without causing cell damage or death. Previous studies have succeeded in fabricating single nanoscale electrodes suitable for cell probing, but in this research, we introduce the controllable fabrication of Multibore Carbon Nanopipettes (MCNPs) –nanoscale probes with multiple, independent hollow carbon nanoscale electrodes within one very small tip – in three stages: (i) forming templates by pulling micropipettes from theta glass capillaries (pipette pulling); (ii) selectively depositing carbon via CVD on the lumen walls of the micropipette (carbon deposition); and (iii) exposing the two carbon nanostructures formed at the micropipette tip with selective wet-etching (carbon exposure).
These MCNPs, suitable for cell probing, also incorporate a multifunctionality that is yet to be seen in existing microelectrodes. Here, we present the step-by-step, repeatable methodology in fabricating MCNPs, the governing parameters at different stages of fabrication and the effects of varying these parameters. We establish that the MCNP geometry can be defined at the pulling stage, where the taper length and diameter of the pipette have an inverse relationship; carbon thickness is defined at the carbon deposition stage and the carbon exposure stage defines the exposed carbon length. We also showed the capability of our MCNPs for intracellular injection by demonstrating their effectiveness in fluid transport and delivery. The fabrication technique offers a repeatable and low cost process of manufacturing MCNPs, thereby making it a commercially viable nanomanufacturing technique that will enable numerous intracellular applications beyond cell probing. Finally, the continuous development of the MCNPs for these numerous intracellular applications may bring about a reform in single cell analysis, biomedical research and disease pathology research.
Library of Congress Subject Headings
Nanomanufacturing; Nanostructured materials; Carbon nanotubes; Cancer--Diagnosis--Technological innovations
Publication Date
5-2015
Document Type
Thesis
Student Type
Graduate
Degree Name
Materials Science and Engineering (MS)
Department, Program, or Center
School of Chemistry and Materials Science (COS)
Advisor
Michael G. Schrlau
Advisor/Committee Member
Kathleen Lamkin-Kennard
Advisor/Committee Member
Kalathur Santhanam
Recommended Citation
Arowosola, Ayomipo, "Fabrication of Multibore Carbon Nanopipettes Using a Template-based Nanomanufacturing Process" (2015). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/8680
Campus
RIT – Main Campus
Plan Codes
MSENG-MS
Comments
Physical copy available from RIT's Wallace Library at T174.7 .A769 2015