Abstract
The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface.
This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D\&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS).
The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted emissivity spectra was also forward modeled through a DIRSIG simulation for comparisons to the radiance measurements. The results showed a promising agreement for homogeneous surfaces with liquid contamination that could be well characterized geometrically. Limitations arose in substrates that were modeled as homogeneous surfaces, but had spatially varying artifacts due to uncertainties with contaminant and surface interactions. There is high desire for accurate physics based modeling of liquid contaminated surfaces and this validation framework may be extended to include a wider array of samples for more realistic natural surfaces that are often found in real world scenarios.
Library of Congress Subject Headings
Surface contamination--Measurement; Surface contamination--Remote sensing; Infrared spectroscopy
Publication Date
8-2015
Document Type
Thesis
Student Type
Graduate
Degree Name
Imaging Science (MS)
Department, Program, or Center
Chester F. Carlson Center for Imaging Science (COS)
Advisor
John Kerekes
Advisor/Committee Member
Michael Gartley
Advisor/Committee Member
Carl Salvaggio
Recommended Citation
Archer, Sean, "Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces" (2015). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/8771
Campus
RIT – Main Campus
Plan Codes
IMGS-MS
Comments
Physical copy available from RIT's Wallace Library at TA418.7 .A73 2015