Abstract
Choosing which bed to assign an admitted patient to in a hospital is a complex problem. There are numerous factors to consider including the patient’s gender and isolation requirements, current bed availability, and unit configurations. This problem must be solved each time a new patient seeks admission resulting in rearrangement of already admitted patients. Each movement of an already admitted patient increases the workload for hospital staff and also increases the risk of nosocomial infections for the patient. In order to alleviate these problems we propose optimizing the patient admission process through a multi-objective model which first maximizes the overall criticality of patients admitted, then minimizes movements of previously admitted patients while creating space for incoming patients. Using this model we perform three sets of experiments. The first experiments seek to determine the ideal number of private and semi-private rooms in a multi-occupancy unit with a fixed number of total rooms. This results in a tool to enable the unit to manage the tradeoffs between moving previously admitted patients and bed utilization. The second experiments seek to determine the ideal timeframe over which to batch patient admissions. These results suggest more frequent admissions have minimal impact on inpatient rearrangement. The third experiments seek to determine the potential benefit of using a centralized admitting entity and finds managing bed assignment from a central perspective far out performs individual units managing their bed assignments.
Library of Congress Subject Headings
Hospital care--Data processing; Hospital size--Data processing; Hospital patients--Classification; Nosocomial infections--Prevention
Publication Date
8-8-2017
Document Type
Thesis
Student Type
Graduate
Degree Name
Industrial and Systems Engineering (MS)
Department, Program, or Center
Industrial and Systems Engineering (KGCOE)
Advisor
Ruben Proano
Advisor/Committee Member
Marcos Esterman
Recommended Citation
Hoff, Brenden, "Multi-objective Optimization of Hospital Inpatient Bed Assignment" (2017). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/9561
Campus
RIT – Main Campus
Plan Codes
ISEE-MS
Comments
Physical copy available from RIT's Wallace Library at RA971 .H64 2017