Abstract
Processors and embedded systems perform algebraic manipulations such as addition, subtraction, multiplication and division on integers in order to complete and execute programs. Unfortunately, most division cores in these devices take significantly more time to compute than other manipulations. Because of this, research has been conducted on finding a division algorithm that does not take as long to execute. This graduate paper discuses and proposes a division core design based on ancient Vedic mathematics. The design is created and simulated as a 4-bit system for completion and analyzed for timing, power consumption, and cell area usage. Estimations on larger designs are completed and used to compare this design to similar ones. It is found that the timing and cell area usage are very minimal compared to other designs based on the same algorithm. However, the power consumption is significantly higher. Possible optimizations and improvements to the design are proposed for future use. At the end of this graduate paper, recommendations are given to optimize and upgrade the current design.
Publication Date
5-2017
Document Type
Master's Project
Student Type
Graduate
Degree Name
Electrical Engineering (MS)
Department, Program, or Center
Electrical Engineering (KGCOE)
Advisor
Mark A. Indovina
Advisor/Committee Member
Sohail A. Dianat
Recommended Citation
Hinkley, Ryan, "Vedic Based Division Core Design" (2017). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/9523
Campus
RIT – Main Campus