Abstract
Collecting large scientific quality thermal infrared image and video data sets is an expensive time consuming endeavor. Thermal infrared imagers cost much more than comparable visible systems and require skilled experienced operators. Also, time and experienced personnel are required to collect quality ground truth. Often it is advantageous to perform computer simulations as an alternative to collecting image and video data with real camera systems. As long as enough physics is incorporated into the models to give accurately comparable results to real imagery, simulated data can be used interchangeably. Generating synthetic images and video has the added benefit of being flexible as the user has control over every aspect of the simulation. Simulations are not subject to restrictions such as location, weather conditions, time of day, or time of year. Ground truth is assigned instead of measured in the synthetic world so it is known a priori. This thesis illustrates a method of using the Digital Image and Remote Sensing Image Generation (DIRSIG) software to create simulated infrared images and video of validated thermal target vehicle models inside thermal infrared wide-area scenes. A finite difference heat propagation and surface temperature solver, ThermoAnalytics Multi-Service Electro-optic Signature (MuSES TM), was used to accurately model the emissive thermal target vehicles. Validation of the thermal target vehicle model was performed using images taken from a laboratory calibrated MWIR camera. Images taken with the calibrated camera of the same type of vehicle as the target model were compared to the synthetic images for the same conditions for validation. Target vehicle motion was added to the simulations through the use of Simulation of Urban Mobility (SUMO), DIRSIGs movement files, and custom python scripting. The output images from DIRSIG were then laced together into video. The resulting video was used to test three tracking algorithms illuminating each one’s strengths and weaknesses.
Library of Congress Subject Headings
Infrared imaging; Motor vehicles--Remote sensing; Image processing--Digital techniques
Publication Date
12-9-2016
Document Type
Thesis
Student Type
Graduate
Degree Name
Imaging Science (MS)
Department, Program, or Center
Chester F. Carlson Center for Imaging Science (COS)
Advisor
Zoran Ninkov
Advisor/Committee Member
J. Daniel Newman
Advisor/Committee Member
David Messinger
Recommended Citation
Rhodes, David B., "Radiometrically Accurate Thermal Vehicle Targets for Synthetic Video Development" (2016). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/9309
Campus
RIT – Main Campus
Plan Codes
IMGS-MS
Comments
Physical copy available from RIT's Wallace Library at TA1570 .R46 2016