Abstract

Moderate resolution remote sensing data offers the potential to monitor the long and short term trends in the condition of the Earth’s resources at finer spatial scales and over longer time periods. While improved calibration (radiometric and geometric), free access (Landsat, Sentinel, CBERS), and higher level products in reflectance units have made it easier for the science community to derive the biophysical parameters from these remotely sensed data, a number of issues still affect the analysis of multi-temporal datasets. These are primarily due to sources that are inherent in the process of imaging from single or multiple sensors. Some of these undesired or uncompensated sources of variation include variation in the view angles, illumination angles, atmospheric effects, and sensor effects such as Relative Spectral Response (RSR) variation between different sensors. The complex interaction of these sources of variation would make their study extremely difficult if not impossible with real data, and therefore, a simulated analysis approach is used in this study.

A synthetic forest canopy is produced using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and its measured BRDFs are modeled using the RossLi canopy BRDF model. The simulated BRDF matches the real data to within 2% of the reflectance in the red and the NIR spectral bands studied. The BRDF modeling process is extended to model and characterize the defoliation of a forest, which is used in factor sensitivity studies to estimate the effect of each factor for varying environment and sensor conditions. Finally, a factorial experiment is designed to understand the significance of the sources of variation, and regression based analysis are performed to understand the relative importance of the factors. The design of experiment and the sensitivity analysis conclude that the atmospheric attenuation and variations due to the illumination angles are the dominant sources impacting the at-sensor radiance.

Library of Congress Subject Headings

Remote sensing--Data processing; Forests and forestry--Remote sensing--Computer simulation

Publication Date

7-12-2016

Document Type

Dissertation

Student Type

Graduate

Degree Name

Imaging Science (Ph.D.)

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)

Advisor

John R. Schott

Advisor/Committee Member

Joseph Voelkel

Advisor/Committee Member

Emmett Ientilucci

Comments

Physical copy available from RIT's Wallace Library at TA1637 .R46 2016

Campus

RIT – Main Campus

Share

COinS