Abstract
Legged transport is the most versatile form of locomotion available to humans and animals. Walking is a complex motion and the best bipedal robots of today are not able to walk as adeptly as a human. Many different models for walking have been studied by other researchers, ranging from a single rigid body moving in two dimensions, to systems with many links and actuators moving in three dimensions. Previous simulation work, for a similar system, has predicted that legged robots can have the same energy efficiency as a rolling wheel, but this has yet to be demonstrated in an experimental prototype. This experimental research examines the dynamics of a rimless wheel, one of the simplest models for walking.
Passive dynamic rimless wheels are shown to naturally walk down ramps but there are still areas of their motion which have not yet been examined. With an addition of a small power source, this research shows that it is possible for a simple rimless wheel to walk across level ground. This Powered Simple Rimless Wheel (PSRW) was shown to be capable of stable bounded ``periodic'' motions. In addition, this PSRW's Cost of Transport (COT) ranged from 0.82 to 1.11 for a single step. The results of this study also lay the groundwork for studying the effects of increasing this system's efficiency by reducing energy loss at collisions.
Library of Congress Subject Headings
Robots--Motion; Robots--Control; Robots--Energy consumption; Wheels--Dynamics
Publication Date
10-2016
Document Type
Thesis
Student Type
Graduate
Degree Name
Mechanical Engineering (MS)
Department, Program, or Center
Mechanical Engineering (KGCOE)
Advisor
Mario W. Gomes
Advisor/Committee Member
Steven Day
Advisor/Committee Member
Alan Nye
Recommended Citation
Dhami, Samket Kumarpal, "Performance of a Powered Simple Rimless-Wheel across Level Ground" (2016). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/9275
Campus
RIT – Main Campus
Comments
Physical copy available from RIT's Wallace Library at TJ211.4 .D42 2016