Abstract

Passing messages to soldiers on the battle field, conducting online banking, and downloading files on the internet are very different applications that all share one thing in common, concerns over security of the data being processed. Data security depends on the cryptographic systems that take into account both the algorithmic weakness and the weaknesses of the hardware devices they are implemented on. The current dominant hardware design medium is complementary metal-oxide-semi-conductor (CMOS). CMOS has been shown to leak more power as the technology node size decreases. The leaked power has a strong correlation with the bits being manipulated inside a device. These power leakages have brought on a class of power analysis that is able to extract secret information being processed in the algorithm with far less computational power than brute force guessing. Recently, many hardware designs have been proposed which have shown resistance against different forms of power analysis by changing hardware layouts; however, these designs are realized in the same technology, CMOS, that causes the side channel attack problem.

There are many emerging technologies that are becoming more practical to implement in conjunction with CMOS. Of these, neuromemristive systems have two characteristics that can be exploited to prevent side channel attacks: low power operation and stochastic behavior. Attacks were conducted on both CMOS and neuromemrisitve based mitigations of the SHA-3 algorithm. In this thesis, digital side channel attack mitigations are created to exploit dual-rail logic. A secure neuromemristive primitive is designed using neural logic blocks that, to the best of our knowledge, have not been considered by others in mitigation of power analysis. Also, an in-depth analysis of power attacks on linear functions compared to typical non-linear attack points is conducted. Metrics such as number of power traces used for the Correlation Power Analysis (CPA), correlation coefficients, confidence ratios, power consumption, and transistor count were used to compare circuit performance. Success rate of guessing a key during SHA-3 operations, while configured as a MAC, was used as a system benchmark. It was found that CMOS is effective in countermeasures when masking linear functions, with the ability to use current standard cells, in ASIC design. If reconfigurable circuits are considered, the neuromemristive circuit had the overall best mitigation strength with almost complete decoupling of input data to power dissipated; moreover, this design offered low power operation and small form factor compared to the original circuit.

Library of Congress Subject Headings

Metal oxide semiconductors, Complementary--Security measures; Hashing (Computer science); Memristors; Data encryption (Computer science)

Publication Date

9-2015

Document Type

Thesis

Student Type

Graduate

Degree Name

Computer Engineering (MS)

Department, Program, or Center

Computer Engineering (KGCOE)

Advisor

Dhireesha Kudithipudi

Advisor/Committee Member

Marcin Łukowiak

Advisor/Committee Member

Stanisław Radziszowski

Comments

Physical copy available from RIT's Wallace Library at TK7871.99.M44 T44 2015

Campus

RIT – Main Campus

Plan Codes

CMPE-MS

Share

COinS