Abstract
This thesis examines the issue of uncertainty reasoning and representation in expert systems. Uncertainty and expert systems are defined. The value of uncertainty in expert systems as an approximation of human reasoning is stressed. Five alternative methods of dealing with uncertainty are explored. These include Bayesian probabilities, Mycin confirmation theory, fuzzy set theory, Dempster-Shafer's theory of evidence and a theory of endorsements. A toolkit to apply uncertainty processing in PROLOG expert systems is developed using fuzzy set theory as the basis for uncertainty reasoning and representation. The concepts of fuzzy logic and approximate reasoning are utilized in the implementation. The toolkit is written in C-PROLOG for the PYRAMID UNIX system at the Rochester Institute of Technology.
Library of Congress Subject Headings
Expert systems (Computer science); Uncertainty (Information theory); Fuzzy sets; Prolog (Computer program language)
Publication Date
1987
Document Type
Thesis
Department, Program, or Center
Computer Science (GCCIS)
Advisor
Biles, Al
Advisor/Committee Member
Lasky, Jefferey
Advisor/Committee Member
Anderson, Peter
Recommended Citation
Bicker, Marcelle M., "A Toolkit for uncertainty reasoning and representation using fuzzy set theory in PROLOG expert systems" (1987). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/88
Campus
RIT – Main Campus
Comments
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: QA76.76.E95 B522 1987