Abstract
Finite amplitude sound propagation undergoes nonlinear distortion due to continuous path interaction with the propagation medium. This distortion tends to defocus the beam causing significant lateral and contrast resolution degradation. Fundamental understanding of this interaction requires development of computational models that accurately predict the nonlinear interaction - development of media-borne harmonics - as well as produce an ultrasound image - introduction of transducer effects, interface transitions, and innovative image processing to extract harmonics. Most computational models of ultrasound propagation assume axial symmetry for computational expediency. Two notable exceptions are the K-Z-K and NLP models. A new endto- end model, NUPROP, is introduced that also incorporates non-axially symmetric geometries and simplified transducer responses to accurately predict ultrasound RF signals for image reconstruction. Nonlinearities are modeled using either the Fubini solution or Burgers' Equation coupled with angular spectrum propagation or Lommel formulation, appropriately masked by the transducer frequency response. Comparative analyses are performed on NUPROP results with high correlation with the literature. Parameter sensitivity analyses are performed to determine harmonic signal characteristics as a function of propagation distance. A-line and B-scan images are produced.
Library of Congress Subject Headings
Ultrasonic imaging--Mathematical models; Image analysis; Nonlinear waves; Image processing
Publication Date
1-1-2000
Document Type
Dissertation
Student Type
Graduate
Department, Program, or Center
Chester F. Carlson Center for Imaging Science (COS)
Advisor
Rao, N.
Advisor/Committee Member
Wilcox, Theodore
Advisor/Committee Member
Schott, John
Recommended Citation
Ayer, Kevin, "Nonlinear ultrasound image modeling: Development of a complete end-to-end model for qualitative and quantitative analysis of medical ultrasound" (2000). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/2943
Campus
RIT – Main Campus
Comments
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: R857.U48 A93 2000