Description

Software development teams face a critical threat to the security of their systems: insiders. A malicious insider is a person who violates an authorized level of access in a software system. Unfortunately, when creating software, developers do not typically account for insider threat. Students learning software development are unaware of the impacts of malicious actors and are far too often untrained in prevention methods against them. A few of the defensive mechanisms to protect against insider threats include eliminating system access once an employee leaves an organization, enforcing principle of least privilege, code reviews, and constant monitoring for suspicious activity. At the Department of Software Engineering at the Rochester Institute of Technology, we require a course titled Engineering of Secure Software and have created an activity designed to prepare students for the problem of insider threats. At the beginning of this activity, student teams are given the task of designing a moderately sized secure software system. The goal of this insider is to manipulate the team into creating a flawed system design that would allow attackers to perform malicious activities once the system has been created. When the insider is revealed at the conclusion of the project, students discuss countermeasures regarding the malicious actions the insiders were able to plan or complete, along with methods of prevention that may have been employed by the team to detect the malicious developer. In this paper, we describe the activity along with the results of a survey. We discuss the benefits and challenges of the activity with the goal of giving other instructors the tools they need to conduct this activity at their institution. While many institutions do not offer courses in computer security, this self-contained activity may be used in any computing course to enforce the importance of protecting against insider threats.

Date of creation, presentation, or exhibit

10-1-2015

Comments

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Document Type

Conference Paper

Department, Program, or Center

Software Engineering (GCCIS)

Campus

RIT – Main Campus

Share

COinS