Abstract

We investigate paths, cycles and wheels in graphs with independence number of at most 2, in particular we prove theorems characterizing all such graphs which are hamiltonian. Ramsey numbers of the form R (G,K3), for G being a path, a cycle or a wheel, are known to be 2n (G) - 1, except for some small cases. In this paper we derive and count all critical graphs 1 for these Ramsey numbers.

Publication Date

1994

Comments

This article is also available at the journal's website at: http://ajc.maths.uq.edu.au/ ISSN:1034-4942 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Article

Department, Program, or Center

Center for Advancing the Study of CyberInfrastructure

Campus

RIT – Main Campus

Share

COinS