Abstract
This paper presents a Novel Identification System which uses generative modeling techniques and Gaussian Mixture Models (GMMs) to identify the main process variables involved in a novel event from multivariate data. Features are generated and subsequently dimensionally reduced by using a Variational Autoencoder (VAE) supplemented by a denoising criterion and a β disentangling method. The GMM parameters are learned using the Expectation Maximization(EM) algorithm on features collected from only normal operating conditions. A one-class classification is achieved by thresholding the likelihoods by a statistically derived value. The Novel Identification method is verified as a detection method on existing Radio Frequency (RF) Generators and standard classification datasets. The RF dataset contains 2 different models of generators with almost 100 unique units tested. Novel Detection on these generators achieved an average testing true positive rate of 97.31% with an overall target class accuracy of 98.16%. A second application has the network evaluate process variables of the RF generators when a novel event is detected. This is achieved by using the VAE decoding layers to map the GMM parameters back to a space equivalent to the original input, resulting in a way to directly estimate the process variables fitness.
Library of Congress Subject Headings
Signal processing--Digital techniques; Pattern recognition systems; Classification--Data processing; Machine learning
Publication Date
8-2018
Document Type
Thesis
Student Type
Graduate
Degree Name
Electrical Engineering (MS)
Department, Program, or Center
Electrical Engineering (KGCOE)
Advisor
Ferat Sahin
Advisor/Committee Member
Sohail A. Dianat
Advisor/Committee Member
Ahmet Okutan
Recommended Citation
Graydon, Tucker B., "Novel Detection and Analysis using Deep Variational Autoencoders" (2018). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/9897
Campus
RIT – Main Campus
Plan Codes
EEEE-MS