Abstract
Suppose the colors in a $\chi(G)$-coloring of a graph $G$ have been rearranged. We will call this rearrangement $c^*$.
The chromatic villainy of the $c^*$ is defined as the minimum number of vertices that need to be recolored in order to return $c^*$ to a proper coloring in which each color appears the same number of times as in the initial coloring.
The maximum chromatic villainy when considering all rearrangements of all $\chi(G)$-coloring of $G$ is the chromatic villainy of $G$.
Here, the chromatic villainies of certain families of graphs were investigated and the chromatic villainies of paths and certain classes of complete multipartite graphs were found.
Bounds were found for certain classes of odd cycles and complete multipartite graphs as well.
Library of Congress Subject Headings
Graph coloring; Paths and cycles (Graph theory)
Publication Date
8-22-2018
Document Type
Thesis
Student Type
Graduate
Degree Name
Applied and Computational Mathematics (MS)
Department, Program, or Center
School of Mathematical Sciences (COS)
Advisor
Paul Wenger
Advisor/Committee Member
Jobby Jacob
Advisor/Committee Member
Darren Narayan
Recommended Citation
Raleigh, Anna, "The Chromatic Villainy of Complete Multipartite Graphs" (2018). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/9889
Campus
RIT – Main Campus
Plan Codes
ACMTH-MS