Abstract
Each year, thousands of people die from heart disease and related illnesses due to the lack of available donor organs. Left ventricular assist devices (LVADs) aim to mitigate that occurrence, serving as a bridge-to-surgery option. While short term survival rates of LVAD patients near that of orthotopic surgery they are not viable long term options due to varied reasons. This work examines one cause, outlet graft thrombosis, and develops an algorithm for increasingly robust classification of device condition as it pertains to thrombosis or more generally occlusion. In order to do so an in vitro heart simulator is developed so that varying degrees of signal non-stationarity can be simulated and tested over a wide range of physiological blood pressure and heart rate conditions. Using a seeded-fault methodology, acoustics are acquired at the LVAD outlet graft location and subsequent spectral images of the sounds are developed. Statistical parameters from the images are used as features for classification using a support vector machine (SVM) which yields promising results. Given a comprehensive training space classification can be performed to fair accuracies (roughly 80%) using only the spectral image parameters. However, when the training space is limited augmenting the image features with patient state parameters elicits more robust identification. The algorithm developed in this work offers non-invasive diagnostic potential for LVAD conditions otherwise requiring invasive means.
Library of Congress Subject Headings
Rotary pumps--Testing; Blood--Circulation, Artificial; Heart--Left ventricle; Spectral imaging
Publication Date
8-2018
Document Type
Thesis
Student Type
Graduate
Degree Name
Mechanical Engineering (MS)
Department, Program, or Center
Mechanical Engineering (KGCOE)
Advisor
Jason Kolodziej
Advisor/Committee Member
Steven Day
Advisor/Committee Member
Mark Kempski
Recommended Citation
Prechtl, Ian Richard, "LVAD Occlusion Condition Monitoring Using State Augmented Acoustic Spectral Images" (2018). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/9884
Campus
RIT – Main Campus
Plan Codes
MECE-MS