Abstract

Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves

Library of Congress Subject Headings

Cushioning materials--Testing; Three-dimensional printing--Materials

Publication Date

12-5-2017

Document Type

Thesis

Student Type

Graduate

Degree Name

Packaging Science(MS)

Department, Program, or Center

Packaging Science (CAST)

Advisor

Changfeng Ge

Advisor/Committee Member

Thomas Kausch

Advisor/Committee Member

Alexis Rich

Campus

RIT – Main Campus

Plan Codes

PACK-MS

Share

COinS