Abstract

The recent surge in cloud services is revolutionizing the way that data is stored and processed. Everyone with an internet connection, from large corporations to small companies and private individuals, now have access to cutting-edge processing power and vast amounts of data storage. This rise in cloud computing and storage, however, has brought with it a need for a new type of security. In order to have access to cloud services, users must allow the service provider to have full access to their private, unencrypted data. Users are required to trust the integrity of the service provider and the security of its data centers. The recent development of fully homomorphic encryption schemes can offer a solution to this dilemma. These algorithms allow encrypted data to be used in computations without ever stripping the data of the protection of encryption. Unfortunately, the demanding memory requirements and computational complexity of the proposed schemes has hindered their wide-scale use. Custom hardware accelerators for homomorphic encryption could be implemented on the increasing number of reconfigurable hardware resources in the cloud, but the long development time required for these processors would lead to high production costs. This research seeks to develop a strategy for faster development of homomorphic encryption hardware accelerators using the process of High-Level Synthesis. Insights from existing number theory software libraries and custom hardware accelerators are used to develop a scalable, proof-of-concept software implementation of Karatsuba modular polynomial multiplication. This implementation was designed to be used with High-Level Synthesis to accelerate the large modular polynomial multiplication operations required by homomorphic encryption. The accelerator generated from this implementation by the High-Level Synthesis tool Vivado HLS achieved significant speedup over the implementations available in the highly-optimized FLINT software library.

Library of Congress Subject Headings

Cloud computing--Security measures; Information retrieval; Homomorphisms (Mathematics); Data encryption (Computer science)

Publication Date

11-2017

Document Type

Thesis

Student Type

Graduate

Degree Name

Computer Engineering (MS)

Department, Program, or Center

Computer Engineering (KGCOE)

Advisor

Marcin Lukowiak

Advisor/Committee Member

Stanislaw Radziszowski

Advisor/Committee Member

Dhireesha Kudithipudi

Campus

RIT – Main Campus

Plan Codes

CMPE-MS

Share

COinS