Abstract

Metal-oxide chemical sensor technology has been praised as a cheap and efficient method of detecting both reducing and oxidizing gases depending on the metal-oxide’s carrier type. The research conducted in this thesis explored methods of enhancing the sensitivity of an n-type metal-oxide material (indium tin oxide, ITO) to a volatile organic compound (VOC) through changes in both device and testing characteristics. Two methods of testing prototype sensors were developed which consisted of short and long-term exposure to ethanol at different temperatures and concentrations. Maximum sensitivity at 2000 ppm was achieved in devices with thin, annealed metal-oxide layers with a high temperature of operation; this sensitivity measurement was achieved using a prolonged exposure test with 100-nm of annealed ITO at an operating temperature of 360°C and yielded a sensitivity of 32.5%. A fabrication process consisting of two lift-off processes for the metal-oxide and contact metal was developed to create the prototype devices. Preliminary characterization on the metal-oxide materials confirmed its thickness, crystallinity / crystal structure, and grain size. In addition to the electrical tests, a future work chemical sensor was thermally and electrically simulated using SolidWorks and Silvaco Atlas, respectively; a proposed fabrication process of the device is also presented, along with a basic outline of future work experiments to further study sensitivity enhancements through other metal-oxide materials, noble catalytic metals, device architecture, and signal processing of proposed electrical testing.

Library of Congress Subject Headings

Chemical detectors--Calibration; Metallic oxides; Indium tin oxide; Volatile organic compounds

Publication Date

7-2017

Document Type

Thesis

Student Type

Graduate

Degree Name

Microelectronic Engineering (MS)

Department, Program, or Center

Microelectronic Engineering (KGCOE)

Advisor

Lynn Fuller

Advisor/Committee Member

Karl Hirschman

Advisor/Committee Member

Michael Jackson

Comments

Physical copy available from RIT's Wallace Library at TP159.C46 H84 2017

Campus

RIT – Main Campus

Plan Codes

MCEE-MS

Share

COinS