Abstract

Cardiovascular disease is the leading cause of death in the United States. Tracking daily changes in one’s cardiovascular health can be critical in diagnosing and managing cardiovascular disease, such as heart failure and hypertension. A toilet seat is the ideal device for monitoring parameters relating to a subject’s cardiac health in his or her home, because it is used consistently and requires no change in daily habit. The present work demonstrates the ability to accurately capture clinically relevant ECG metrics, pulse transit time based blood pressures, and other parameters across subjects and physiological states using a toilet seat-based cardiovascular monitoring system, enabled through advanced signal processing algorithms and techniques. The algorithms described herein have been designed for use with noisy physiologic signals measured at non-standard locations. A key component of these algorithms is the classification of signal quality, which allows automatic rejection of noisy segments before feature delineation and interval extractions. The present delineation algorithms have been designed to work on poor quality signals while maintaining the highest possible temporal resolution. When validated on standard databases, the custom QRS delineation algorithm has best-in-class sensitivity and precision, while the photoplethysmogram delineation algorithm has best-in-class temporal resolution. Human subject testing on normative and heart failure subjects is used to evaluate the efficacy of the proposed monitoring system and algorithms. Results show that the accuracy of the measured heart rate and blood pressure are well within the limits of AAMI standards. For the first time, a single device is capable of monitoring long-term trends in these parameters while facilitating daily measurements that are taken at rest, prior to the consumption of food and stimulants, and at consistent times each day. This system has the potential to revolutionize in-home cardiovascular monitoring.

Library of Congress Subject Headings

Cardiovascular system--Diseases--Diagnosis--Data processing; Signal processing--Digital techniques

Publication Date

9-16-2016

Document Type

Dissertation

Student Type

Graduate

Degree Name

Microsystems Engineering (Ph.D.)

Department, Program, or Center

Microsystems Engineering (KGCOE)

Advisor

David A. Borkholder

Advisor/Committee Member

Karl Q. Schwarz

Advisor/Committee Member

Daniel B. Phillips

Comments

Physical copy available from RIT's Wallace Library at RC670 .C66 2016

Campus

RIT – Main Campus

Share

COinS