Abstract
In order to achieve high efficiency, multimedia source coding usually relies on the use of predictive coding. While more efficient, source coding based on predictive coding has been considered to be more sensitive to errors during communication. With the current volume and importance of multimedia communication, minimizing the overall distortion during communication over an error-prone channel is critical. In addition, for real-time scenarios, it is necessary to consider additional constraints such as fix and small delay for a given bit rate. To comply with these requirements, we seek an efficient joint source-channel coding scheme.
In this work, end-to-end distortion is studied for a first order autoregressive synthetic source that represents a general multimedia traffic. This study reveals that predictive coders achieve the same channel-induced distortion performance as memoryless codecs when applying optimal error concealment. We propose a joint source-channel system based on incremental redundancy that satisfies the fixed delay and error-prone channel constraints and combines DPCM as a source encoder and a rate-compatible punctured convolutional (RCPC) error control codec. To calculate the joint source-channel coding rate allocation that minimizes end-to-end distortion, we develop a Markov Decision Process (MDP) approach for delay constrained feedback Hybrid ARQ, and we use a Dynamic Programming (DP) technique. Our simulation results support the improvement in end-to-end distortion compared to a conventional Forward Error Control (FEC) approach with no feedback.
Library of Congress Subject Headings
Multimedia systems; Data compression (Telecommunication); Coding theory; Rate distortion theory
Publication Date
8-2016
Document Type
Thesis
Student Type
Graduate
Degree Name
Computer Engineering (MS)
Department, Program, or Center
Computer Engineering (KGCOE)
Advisor
Andres Kwasinski
Advisor/Committee Member
Sohail Dianat
Advisor/Committee Member
Shanchieh Jay Yang
Recommended Citation
Jarvis, Ebrahim, "Joint Source-Channel Coding Optimized On End-to-End Distortion for Multimedia Source" (2016). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/9219
Campus
RIT – Main Campus
Comments
Physical copy available from RIT's Wallace Library at QA76.575 .J37 2016