Abstract

Computer networks are becoming more complex as the reliance on these network increases in this era of exponential technological growth. This makes the potential gains for criminal activity on these networks extremely serious and can not only devastate organizations or enterprises but also the general population. As complexity of the network increases so does the difficulty to protect the networks as more potential vulnerabilities are introduced. Despite best efforts, traditional defenses like Intrusion Detection Systems and penetration tests are rendered ineffective to even amateur cyber adversaries. Networks now need to be analyzed at all times to preemptively detect weaknesses which harbored a new research field called Cyber Threat Analytics. However, current techniques for cyber threat analytics typically perform static analysis on the network and system vulnerabilities but few address the most variable and most critical piece of the puzzle -- the attacker themselves.

This work focuses on defining a baseline framework for modeling a wide variety of cyber attack behaviors which can be used in conjunction with a cyber attack simulator to analyze the effects of individual or multiple attackers on a network. To model a cyber attacker's behaviors with reasonable accuracy and flexibility, the model must be based on aspects of an attacker that are used in real scenarios. Real cyber attackers base their decisions on what they know and learn about the network, vulnerabilities, and targets. This attacker behavior model introduces the aspect of knowledge-based decision making to cyber attack behavior modeling with the goal of providing user configurable options. This behavior model employs Cyber Attack Kill Chain along with an ensemble of the attacker capabilities, opportunities, intent, and preferences. The proposed knowledge-based decision making model is implemented to enable the simulation of a variety of network attack behaviors and their effects. This thesis will show a number of simulated attack scenarios to demonstrate the capabilities and limitations of the proposed model.

Library of Congress Subject Headings

Cyberterrorism--Computer simulation; Computer networks--Security measures

Publication Date

7-2016

Document Type

Thesis

Student Type

Graduate

Degree Name

Computer Engineering (MS)

Department, Program, or Center

Computer Engineering (KGCOE)

Advisor

Shanchieh Jay Yang

Advisor/Committee Member

Michael Kuhl

Advisor/Committee Member

Andres Kwasinski

Comments

Physical copy available from RIT's Wallace Library at TK5105.59 .M67 2016

Campus

RIT – Main Campus

Share

COinS