Abstract

The first step in monitoring an observer’s eye gaze is identifying and locating the image of their pupils in video recordings of their eyes. Current systems work under a range of conditions, but fail in bright sunlight and rapidly varying illumination. A computer vision system was developed to assist with the recognition of the pupil in every frame of a video, in spite of the presence of strong first-surface reflections off of the cornea. A modified Hough Circle detector was developed that incorporates knowledge that the pupil is darker than the surrounding iris of the eye, and is able to detect imperfect circles, partial circles, and ellipses. As part of processing the image is modified to compensate for the distortion of the pupil caused by the out-of-plane rotation of the eye. A sophisticated noise cleaning technique was developed to mitigate first surface reflections, enhance edge contrast, and reduce image flare. Semi-supervised human input and validation is used to train the algorithm. The final results are comparable to those achieved using a human analyst, but require only a tenth of the human interaction.

Library of Congress Subject Headings

Eye tracking--Data processing; Computer vision; Machine learning; Optical pattern recognition

Publication Date

11-20-2015

Document Type

Dissertation

Student Type

Graduate

Degree Name

Imaging Science (Ph.D.)

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)

Advisor

Jeff Pelz

Advisor/Committee Member

Mark Fairchild

Advisor/Committee Member

Nathan Cahill

Comments

Physical copy available from RIT's Wallace Library at QP477.5 .K46 2015

Campus

RIT – Main Campus

Plan Codes

IMGS-PHD

Share

COinS