Abstract
Side Channel Attacks (SCA) exploit weaknesses in implementations of cryptographic functions resulting from unintended inputs and outputs such as operation timing, electromagnetic radiation, thermal/acoustic emanations, and power consumption to break cryptographic systems with no known weaknesses in the algorithm’s mathematical structure. Power Analysis Attack (PAA) is a type of SCA that exploits the relationship between the power consumption and secret key (secret part of input to some cryptographic process) information during the cryptographic device normal operation. PAA can be further divided into three categories: Simple Power Analysis (SPA), Differential Power Analysis (DPA) and Correlation Power Analysis (CPA). PAA was first introduced in 1998 and mostly focused on symmetric-key block cipher Data Encryption Standard (DES). Most recently this technique has been applied to cryptographic hash functions.
Keccak is built on sponge construction, and it provides a new Message Authentication Code (MAC) function called MAC-Keccak. The focus of this thesis is to apply the power analysis attacks that use CPA technique to extract the key from the MAC-Keccak. So far there are attacks of physical hardware implementations of MAC-Keccak using FPGA development board, but there has been no side channel vulnerability assessment of the hardware implementations using simulated power consumption waveforms. Compared to physical power extraction, circuit simulation significantly reduces the complexity of mounting a power attack, provides quicker feedback during the implementation/study of a cryptographic device, and that ultimately reduces the cost of testing and experimentation. An attack framework was developed and applied to the Keccak high speed core hardware design from the SHA-3 competition, using gate-level circuit simulation. The framework is written in a modular fashion to be flexible to attack both simulated and physical power traces of AES, MAC-Keccak, and future crypto systems. The Keccak hardware design is synthesized with the Synopsys 130-nm CMOS standard cell library. Simulated instantaneous power consumption waveforms are generated with Synopsys PrimeTime PX. 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit CPA selection function key guess size attacks are performed on the waveforms to compare/analyze the optimization and computation effort/performance of successful key extraction on MAC-Keccak using 40 byte key size that fits the whole bottom plane of the 3D Keccak state. The research shows the larger the selection function key guess size used, the better the signal-noise-ratio (SNR), therefore requiring fewer numbers of traces needed to be applied to retrieve the key but suffer from higher computation effort time. Compared to larger selection function key guess size, smaller key guess size has lower SNR that requires higher number of applied traces for successful key extraction and utilizes less computational effort time. The research also explores and analyzes the attempted method of attacking the second plane of the 3D Keccak state where the key expands beyond 40 bytes using the successful approach against the bottom plane.
Library of Congress Subject Headings
Hashing (Computer science)--Testing; Cyberterrorism--Prevention; Data encryption (Computer science)--Computer security
Publication Date
6-2015
Document Type
Thesis
Student Type
Graduate
Degree Name
Computer Engineering (MS)
Department, Program, or Center
Computer Engineering (KGCOE)
Advisor
Marcin Łukowiak
Advisor/Committee Member
Stanisław P. Radziszowski
Advisor/Committee Member
Dhireesha Kudithipudi
Recommended Citation
Tran, Xuan D., "Power Analysis Attacks on Keccak" (2015). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/8802
Campus
RIT – Main Campus
Plan Codes
CMPE-MS
Comments
Physical copy available from RIT's Wallace Library at QA76.9.H36 T73 2015