Abstract
Photovoltaics are an essential enabling technology providing power both where it would be impractical to deliver otherwise and where sustainably produced--and recently, economically competitive--energy is demanded. Significant effort has gone into increasing the efficiency of these devices since their initial development in the 1950s. The most dramatic enhancements have been from the judicious choice of material used for photon collection, with current state of the art (SOA) conversion efficiencies reaching 46%. Further improvements may be engineered through exploration of next-generation methodologies, such as the incorporation of quantum dots (QDs), to maximally exploit the solar spectrum and develop solar cells producing both large current densities and large voltages compared to current SOA.
In this work, the electrical, optical, and mechanical properties of GaAs solar cells incorporating nanostructured InAs QDs, strain balanced with GaP, were studied. QDs allow for an increase in the current generation capabilities of the bulk GaAs semiconductor through absorption of sub-bandgap photons via bound states in the low-bandgap, low-dimensional material. QDs alter the recombination dynamics of charge carriers in the photovoltaic device, which typically led to an undesirable reduction in voltage of more than 200 mV. The addition of dopant, necessary to explore the effects of an intermediate band solar cell, showed a voltage recovery of 121 mV, with no positive or negative effects on sub-bandgap collection. Advanced characterization and data analysis techniques were developed, combining photoreflectance and temperature-dependent photoluminescence, to investigate the activation energy of bound states in the QD, which were shown to undesirably decrease by 34 meV to 40 meV with the addition of doping. Simulation of alternative structures that may help to increase this activation energy were performed using alternative strain balancing designs, and a general strain balancing model for strained nanostructured superlattices for a variety of material systems was developed.
Publication Date
5-14-2015
Document Type
Dissertation
Student Type
Graduate
Degree Name
Microsystems Engineering (Ph.D.)
Department, Program, or Center
Microsystems Engineering (KGCOE)
Advisor
Seth M. Hubbard
Advisor/Committee Member
Ryne P. Raffaelle
Advisor/Committee Member
Sean L. Rommel
Recommended Citation
Polly, Stephen Jade, "Design and Implementation of Quantum Dot Enhanced Next Generation Photovoltaic Devices" (2015). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/8707
Campus
RIT – Main Campus
Plan Codes
MCSE-PHD