Abstract
This research investigates a novel data driven approach to condition monitoring of Electro-Mechanical Actuators (EMAs) consisting of feature extraction and fault classification. Since many common faults in rotating machinery produce unique frequency components, the approach is based on signal analysis in the frequency domain of both inherent EMA signals and accelerometers. The feature extraction process exposes fault frequencies in signal data that are synchronous with motor position through a series of signal processing techniques consisting of digital re-sampling, Power Spectral Density (PSD) computation, and feature reduction. The resulting reduced dimension feature is then used to determine the condition of the EMA with a trained Bayesian Classifier. Signal data collected from EMAs in known health configurations is used to train the algorithms so that the condition of EMA’s with unknown health may be predicted. Laboratory results show that EMA condition can be determined over multiple non-steady operating conditions and is capable of isolating multiple faults that produce unique fault signatures.
Library of Congress Subject Headings
Actuators--Data processing; Flight control; Mechatronics
Publication Date
4-2012
Document Type
Thesis
Student Type
Graduate
Degree Name
Mechanical Engineering (MS)
Department, Program, or Center
Mechanical Engineering (KGCOE)
Advisor
Jason Kolodziej
Advisor/Committee Member
Mark Kempski
Advisor/Committee Member
Ferat Sahin
Recommended Citation
Chirico, Anthony J. III, "A Data Driven Frequency Based Method For Electrical-Mechanical Actuator Condition Monitoring" (2012). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/8701
Campus
RIT – Main Campus
Comments
Physical copy available from RIT's Wallace Library at TJ223.A25 C45 2012