Fossil fuel consumption has a deleterious effect on humans, the economy, and the environment. Renewable energy technologies must be identified and commercialized as quickly as possible so that the transition to renewables can happen at a minimum of financial and societal cost. Organic photovoltaic cells offer an inexpensive and disruptive energy technology, if the scientific challenges of understanding charge photogeneration in a bulk heterojunction material can be overcome. At RIT, there is a strong focus on creating new materials that can both offer fundamentally important scientific results relating to quantum photophysics, and simultaneously assist in the development of strong candidates for future commercialized technology. In this presentation, the results of intensive materials characterization of a series of squaraine small molecule donors will be presented, as well as a full study of the fabrication and optimization required to achieve >4% photovoltaic cell efficiency. A relationship between the molecular structure of the squaraine and its ability to form nanoscale aggregates will be explored. Squaraine aggregation will be described as a unique optoelectronic probe of the structure of the bulk heterojunction. This relationship will then be utilized to explain changes in crystallinity that impact the overall performance of the devices. Finally, a predictive summary will be given for the future of donor material research at RIT.

Library of Congress Subject Headings

Solar cells--Materials; Photovoltaic power systems--Materials; Photovoltaic power generation; Organic compounds--Electric properties

Publication Date


Document Type


Student Type


Degree Name

Microsystems Engineering (Ph.D.)

Department, Program, or Center

Microsystems Engineering (KGCOE)


Chris Collison

Advisor/Committee Member

John Andersen

Advisor/Committee Member

Jeremy Cody


Physical copy available from RIT's Wallace Library at TK2960 .S74 2014


RIT – Main Campus

Plan Codes