Abstract
Visual tracking has become an increasingly important topic of research in the
field of Computer Vision (CV). There are currently many tracking methods based on the
Detect-then-Track paradigm. This type of approach may allow for a system to track a
random object with just one initialization phase, but may often rely on constructing
models to follow the object. Another limitation of these methods is that they are
computationally and memory intensive, which hinders their application to resource
constrained platforms such as mobile devices. Under these conditions, the
implementation of Augmented Reality (AR) or complex multi-part systems is not
possible.
In this thesis, we explore a variety of interest point descriptors for generic object
tracking. The SIFT descriptor is considered a benchmark and will be compared with
binary descriptors such as BRIEF, ORB, BRISK, and FREAK. The accuracy of these
descriptors is benchmarked against the ground truth of the object's location. We use
dictionaries of descriptors to track regions with small error under variations due to
occlusions, illumination changes, scaling, and rotation. This is accomplished by using
Dense-to-Sparse Search Pattern, Locality Constraints, and Scale Adaptation. A
benchmarking system is created to test the descriptors' accuracy, speed, robustness, and
distinctness. This data offers a comparison of the tracking system to current state of the
art systems such as Multiple Instance Learning Tracker (MILTrack), Tracker Learned
Detection (TLD), and Continuously Adaptive MeanShift (CAMSHIFT).
Library of Congress Subject Headings
Computer vision; Automatic tracking--Data processing; Optical pattern recognition; Machine learning
Publication Date
5-2014
Document Type
Thesis
Student Type
Graduate
Degree Name
Computer Engineering (MS)
Department, Program, or Center
Computer Engineering (KGCOE)
Advisor
Andreas Savakis
Advisor/Committee Member
Raymond Ptucha
Advisor/Committee Member
Sonia Lopez Alarcon
Recommended Citation
Spang, Henry A. V, "Object Tracking Using Local Binary Descriptors" (2014). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/7881
Campus
RIT – Main Campus
Plan Codes
CMPE-MS
Comments
Physical copy available from RIT's Wallace Library at TA1634 .S736 2014