Abstract
RIT's Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool allows modeling of real world scenes to create synthetic imagery for sensor design and analysis, trade studies, algorithm validation, and training image analysts. To increase model construction speed, and the diversity and size of synthetic scenes which can be generated it is desirable to automatically segment real world imagery into different material types and import a material classmap into DIRSIG.
This work contributes a methodology based on standard texture recognition techniques to supervised classification of material types in oblique aerial imagery. Oblique imagery provides many challenges for texture recognition due to illumination changes with view angle, projective distortions, occlusions and self shadowing. It is shown that features derived from a set of rotationally invariant bandpass filters fused with color channel information can provide supervised classification accuracies up to 70% with minimal training data.
Library of Congress Subject Headings
Remote sensing--Data processing; Image processing--Digital techniques; Visual texture recognition; Classification
Publication Date
10-5-2014
Document Type
Thesis
Student Type
Graduate
Degree Name
Imaging Science (MS)
Department, Program, or Center
Chester F. Carlson Center for Imaging Science (COS)
Advisor
David Messinger
Advisor/Committee Member
Harvey Rhody
Advisor/Committee Member
Carl Salvaggio
Recommended Citation
Harris, Michael L., "Supervised Material Classification in Oblique Aerial Imagery Using Gabor Filter Features" (2014). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/8542
Campus
RIT – Main Campus
Plan Codes
IMGS-MS
Comments
Physical copy available from RIT's Wallace Library at G70.4 .H377 2014