Abstract
Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not been investigated in detail. This study begins to investigate the effects of changing operating conditions on liquid water transport through the reactant channels. It has been identified that rapidly increasing temperature leads to the dry-out of the membrane and rapidly cooling the cell below 55°C results in the start of cell flooding. In changing the operating load of the PEMFC, overshoot in the pressure drop in the reactant channel has been identified for the first time as part of this investigation. A parametric study has been conducted to identify the factors which influence this overshoot behavior.
Library of Congress Subject Headings
Proton exchange membrane fuel cells--Mechanical properties; Proton membrane exchange fuel cells--Thermal properties; Fluid-structure interaction
Publication Date
9-2014
Document Type
Dissertation
Student Type
Graduate
Degree Name
Microsystems Engineering (Ph.D.)
Department, Program, or Center
Microsystems Engineering (KGCOE)
Advisor
Satish G. Kandlikar
Advisor/Committee Member
Steven Day
Advisor/Committee Member
Kathleen Lamkin-Kennard
Recommended Citation
Banerjee, Rupak, "Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells" (2014). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/8484
Campus
RIT – Main Campus
Plan Codes
MCSE-PHD
Comments
Physical copy available from RIT's Wallace Library at Tk2933.P76 B364 2014