Abstract

Multi-object tracking is a problem with wide application in modern computing. Object tracking is leveraged in areas such as human computer interaction, autonomous vehicle navigation, panorama generation, as well as countless other robotic applications. Several trackers have demonstrated favorable results for tracking of single objects. However, modern object trackers must make significant tradeoffs in order to accommodate multiple objects while maintaining real-time performance. These tradeoffs include sacrifices in robustness and accuracy that adversely affect the results.

This thesis details the design and multiple implementations of an object tracker that is focused on computational efficiency. The computational efficiency of the tracker is achieved through use of local binary descriptors in a template matching approach. Candidate templates are matched to a dictionary composed of both static and dynamic templates to allow for variation in the appearance of the object while minimizing the potential for drift in the tracker. Locality constraints have been used to reduce tracking jitter. Due to the significant promise for parallelization, the tracking algorithm was implemented on the Graphics Processing Unit (GPU) using the CUDA API. The tracker's efficiency also led to its implantation on a mobile platform as one of the mobile trackers that can accurately track at faster than realtime speed. Benchmarks were performed to compare the proposed tracker to state of the art trackers on a wide range of standard test videos. The tracker implemented in this work has demonstrated a higher degree of accuracy while operating several orders of magnitude faster.

Library of Congress Subject Headings

Computer vision; Automatic tracking; Optical pattern recognition; Machine learning

Publication Date

7-2014

Document Type

Thesis

Student Type

Graduate

Degree Name

Computer Engineering (MS)

Department, Program, or Center

Computer Engineering (KGCOE)

Advisor

Andreas Savakis

Advisor/Committee Member

Raymond Ptucha

Advisor/Committee Member

Roy Melton

Comments

Physical copy available from RIT's Wallace Library at TA1634 .M46 2014

Campus

RIT – Main Campus

Plan Codes

CMPE-MS

Share

COinS