Abstract
A hyperboloid shell of revolution (HSR) is proposed for implementation as a coupling, into a fullly integrated driveshaft/coupling assembly. The dynamics of the coupling is not clearly understood, which prompts the need for an analytic investigation of the hyperboloid shell of revolution. The hyperboloid shell of revolution is one in which the meridian of the shell is defined by the equation of a hyperbola. Two methods are utilized to find the first bending frequency of the HSR: Finite Element Method and the Assumed Mode Shape Method. the Fiinite Element Method is applied to Timoshenko Beam Theory, and Galerkin's Assumed Mode Shape Method is applied to the Kirchoff-Love theory of thin shells. Both methods are applied to a fixed-free and fixed-fixed HSR. A parametric study is done to study the effect of the geometric paramaters (the minimum radius, and the axial length under certain specifications) on the natural frequencies. These results are then compared to those found using the program ANSYS.
Library of Congress Subject Headings
Couplings, Flexible--Mathematical models; Machinery--Alignment--Mathematical models; Hyperboloid
Publication Date
7-2005
Document Type
Thesis
Student Type
Graduate
Degree Name
Mechanical Engineering (MS)
Department, Program, or Center
Mechanical Engineering (KGCOE)
Advisor
Hany Ghoneim
Advisor/Committee Member
Josef Török
Advisor/Committee Member
Kevin Kochersberger
Recommended Citation
Towner, Brian G., "Dynamic characteristics of a hyperboloid shell of revolution with application to flexible couplings" (2005). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/8204
Campus
RIT – Main Campus
Comments
Physical copy available from RIT's Wallace Library at TJ183 .T69 2005