Abstract

Integrated multimedia systems process text, graphics, and other discrete media such as digital audio and video streams. In an uncompressed state, graphics, audio and video data, especially moving pictures, require large transmission and storage capacities which can be very expensive. Hence video compression has become a key component of any multimedia system or application. The ITU (International Telecommunications Union) and MPEG (Moving Picture Experts Group) have combined efforts to put together the next generation of video compression standard, the H.264/MPEG-4 PartlO/AVC, which was finalized in 2003. The H.264/AVC uses significantly improved and computationally intensive compression techniques to maximize performance. H.264/AVC compliant encoders achieve the same reproduction quality as encoders that are compliant with the previous standards while requiring 60% or less of the bit rate [2].

This thesis aims at designing two basic blocks of an ASIC capable of performing the H.264 video compression. These two blocks, the Quantizer, and Entropy Encoder implement the Baseline Profile of the H.264/AVC standard. The architecture is implemented in Register Transfer Level HDL and synthesized with Synopsys Design Compiler using TSMC 0.25(xm technology, giving us an estimate of the hardware requirements in real-time implementation. The quantizer block is capable of running at 309MHz and has a total area of 785K gates with a power requirement of 88.59mW. The entropy encoder unit is capable of running at 250 MHz and has a total area of 49K gates with a power requirement of 2.68mW. The high speed that is achieved in this thesis simply indicates that the two blocks Quantizer and Entropy Encoder can be used as IP embedded in the HDTV systems.

Library of Congress Subject Headings

Integrated circuits--Very large scale integration; Video compression--Standards--Data processing

Publication Date

2005

Document Type

Thesis

Student Type

Graduate

Degree Name

Electrical Engineering (MS)

Department, Program, or Center

Electrical Engineering (KGCOE)

Advisor

Kenneth W. Hsu

Advisor/Committee Member

Pratapa Reddy

Advisor/Committee Member

Edward Brown

Comments

Physical copy available from RIT's Wallace Library at TK7874.75 .K67

Campus

RIT – Main Campus

Share

COinS