Abstract
One of the main goals of artificial intelligence is to allow computers to understand the world around them. As humans we extract a large amount of knowledge about the world from our visual perception, and the field of computer vision is determined to give computers access to this same wealth of knowledge. One of the fundamental steps in understanding the world is finding specific objects within our field of view, and the related task of following these objects as they move.
In this thesis the Implicit Shape Model algorithm, a local feature-based object detection algorithm, is implemented and used to develop an appearance model and object tracking algorithm based on it. This algorithm is very robust to intraclass variation, and can successfully track objects when both occlusion and non-stationary backgrounds are present. The usefulness of the proposed appearance model is analyzed, and results of the algorithm on real video sequences are presented. Several enhancements to the method are also proposed, and performance in terms of recall and precision is analyzed.
Library of Congress Subject Headings
Computer vision; Optical pattern recognition; Pattern recognition systems; Automatic tracking; Image processing; Detectors
Publication Date
9-6-2005
Document Type
Thesis
Student Type
Graduate
Degree Name
Computer Science (MS)
Department, Program, or Center
Computer Science (GCCIS)
Advisor
Roger Gaborski
Advisor/Committee Member
Roxanne Canosa
Advisor/Committee Member
Carl Reynolds
Recommended Citation
Clark, Daniel S., "Object detection and tracking using a parts-based approach" (2005). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/7958
Campus
RIT – Main Campus
Comments
Physical copy available from RIT's Wallace Library at TA1634 .C54 2005