Abstract
Let F and H be graphs. A subgraph G of H is an F-saturated subgraph of H if F is not a subgraph of G and F is a subgraph of G+e for any edge e in E(H) E(G). The saturation number of F in H is the minimum number of edges in a F-saturated subgraph of H. We denote the saturation number of F in H as sat(H,F). In this thesis we review the history of saturated subgraphs, and prove new results on saturated subgraphs of tripartite graphs. Let Ka,b,c be a compete tripartite graph, with partite sets of size a, b, and c. Specifically, we determine sat(Kn1,n2,n3,Kl,l,l), for n1≥ n2≥ n3, when n2 bounded by a linear function of n3. We also examine the special case when l=1 and determine sat(Kn1,n2,n3,K3)$ for n1≥ n2≥ n3, and n_3 sufficiently large. We also consider two natural variants of saturated subgraphs that arise in the tripartite setting. We examine the behavior of these extensions using illustrative examples to highlight the differences between these variations and the original problem.
Library of Congress Subject Headings
Graph theory
Publication Date
5-12-2014
Document Type
Thesis
Student Type
Graduate
Degree Name
Applied and Computational Mathematics (MS)
Department, Program, or Center
School of Mathematical Sciences (COS)
Advisor
Paul Wenger
Advisor/Committee Member
Jobby Jacob
Advisor/Committee Member
Darren Narayan
Recommended Citation
Sullivan, Eric C., "Minimum saturated subgraphs of tripartite graphs" (2014). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/7933
Campus
RIT – Main Campus
Plan Codes
ACMTH-MS
Comments
Physical copy available from RIT's Wallace Library at QA166 .S85 2014