Abstract
This thesis discusses the QoS feature, Traffic Engineering (TE) application, and Virtual Private Network (VPN) application of the Multi Protocol Label Switching (MPLS) protocol. This thesis concentrates on comparing MPLS with other prominent technologies such as Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and Frame Relay (FR). MPLS combines the flexibility of Internet Protocol (IP) with the connection oriented approach of Asynchronous Transfer Mode (ATM) or Frame Relay (FR). Section 1 lists several advantages MPLS brings over other technologies. Section 2 covers architecture and a brief description of the key components of MPLS. The information provided in Section 2 builds a background to compare MPLS with the other technologies in the rest of the sections. Since it is anticipate that MPLS will be a main core network technology, MPLS is required to work with two currently available QoS architectures: Integrated Service (IntServ) architecture and Differentiated Service (DiffServ) architecture. Even though the MPLS does not introduce a new QoS architecture or enhance the existing QoS architectures, it works seamlessly with both QoS architectures and provides proper QoS support to the customer. Section 3 provides the details of how MPLS supports various functions of the IntServ and DiffServ architectures. TE helps Internet Service Provider (ISP) optimize the use of available resources, minimize the operational costs, and maximize the revenues. MPLS provides efficient TE functions which prove to be superior to IP and ATM/FR. Section 4 discusses how MPLS supports the TE functionality and what makes MPLS superior to other competitive technologies. ATM and FR are still required as a backbone technology in some areas where converting the backbone to IP or MPLS does not make sense or customer demands simply require ATM or FR. In this case, it is important for MPLS to work with ATM and FR. Section 5 highlights the interoperability issues and solutions for MPLS while working in conjunction with ATM and FR. In section 6, various VPN tunnel types are discussed and compared with the MPLS VPN tunnel type. The MPLS VPN tunnel type is concluded as an optimal tunnel approach because it provides security, multiplexing, and the other important features that are reburied by the VPN customer and the ISP. Various MPLS layer 2 and layer 3 VPN solutions are also briefly discussed. In section 7 I conclude with the details of an actual implementation of a layer 3 MPLS VPN solution that works in conjunction with Border Gateway Protocol (BGP).
Library of Congress Subject Headings
MPLS standard--Evaluation; Extranets (Computer networks)
Publication Date
11-2006
Document Type
Thesis
Student Type
Graduate
Degree Name
Information Sciences and Technologies (MS)
Department, Program, or Center
Information Sciences and Technologies (GCCIS)
Advisor
Sylvia Perez-Hardy
Advisor/Committee Member
Luther Troell
Advisor/Committee Member
Ashok Jain
Recommended Citation
Joshi, Akshay, "Multi Protocol Label Switching: Quality of Service, Traffic Engineering application, and Virtual Private Network application" (2006). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/7891
Campus
RIT – Main Campus
Comments
Physical copy available from RIT's Wallace Library at TK5105.573 .J67 2006