Abstract
Leishmania major, a member of the Kinetoplastida family, is a primitive protozoan that causes a human disease, called leishmaniases, affecting numerous people worldwide. The identification of new drug targets to combat leishmaniases necessitates a thorough understanding of how genomic instructions are transformed into functional proteins. It requires not only the prediction and categorization of all the genes, but also a profound understanding of their regulation. Much of gene regulation may occur through a process known as frarcs-splicing. Trans-splicing, which is mechanistically similar to cissplicing, is the process of cleaving a large polycistronic transcript into smaller monocistronic components.
The goal of this project was to establish a model to accurately predict sites where /rans-splicing occurs. After carefully analyzing the data set, a second-order log odds ratio model was created. This method achieved an overall accuracy of 89% in predicting transsplice sites.
Furthermore, this new method has been applied to a small data set with alternative trans-splice sites. Of the 70 EST-indicated alternative frans-splice sites 60 were identified as such. This represents the first computational method for the prediction of alternative splice sites. In addition, we have found the first real evidence for the branch point signal which plays an essential role in the ^raws-splicing process.
Library of Congress Subject Headings
Leishmania--Genetics; RNA splicing--Mathematical models; Leishmaniasis--Treatment
Publication Date
2007
Document Type
Thesis
Student Type
Graduate
Degree Name
Bioinformatics (MS)
Department, Program, or Center
Thomas H. Gosnell School of Life Sciences (COS)
Advisor
Shuba Gopal
Advisor/Committee Member
James Halavin
Advisor/Committee Member
Paul Tymann
Recommended Citation
Habegger, Lukas, "Identification of trans-splicing sites in Leishmania major using probabilistic methods" (2007). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/7886
Campus
RIT – Main Campus
Comments
Physical copy available from RIT's Wallace Library at QL368.K5 H32 2007