Abstract
The complex interfacial phenomena involved in two-phase gas-liquid flow have defied mathematical simplification and modeling. However, the systems are used in heat exchangers, condensers, chemical processing plants, and nuclear reactor systems. The present work considers a 1 mm square minichannel and adiabatic flows corresponding to practical PEM fuel cell conditions. Pressure drop data is collected in experimentation covering mass fluxes of 4.0-33.6 kg/m2s, which correspond to superficial gas and liquid velocities of 3.4-10 m/s and 0.001-0.02 m/s respectively. The experiments are repeated with water of reduced surface tension, caused by the addition of surfactant, in order to quantify the surface tension effects, as it is recognized that surface tension is an important parameter for two-phase flow in minichannels. The published models are evaluated for correct consideration of the surface tension effects and accurate prediction of pressure drop. The addition of surfactant is shown to have no discemable influence on pressure drop. Two models by Chen et al. are found to acceptably predict the experimental data within 20-25%, however a new model is proposed that matches the experimental data with deviations of less than 5%.
Library of Congress Subject Headings
Two-phase flow; Fluid-structure interaction; Pipe--Hydrodynamics; Surface active agents
Publication Date
2005
Document Type
Thesis
Student Type
Graduate
Degree Name
Mechanical Engineering (MS)
Department, Program, or Center
Mechanical Engineering (KGCOE)
Advisor
Satish Kandlikar
Advisor/Committee Member
Abhijit Mukherjee
Advisor/Committee Member
Jeffrey Kozak
Recommended Citation
English, Nathan J., "An Experimental Investigation into the Effect of Surfactants on Air-Water Two-Phase Flow in Minichannels" (2005). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/7751
Campus
RIT – Main Campus
Comments
Physical copy available from RIT's Wallace Library at TA357.5.M84 E64 2005