Abstract
Low Reynolds number supersonic nozzles have been studied for several years due to their significance in applications in micro-spacecraft. As satellite design reduces in mass and size, smaller more versatile propulsion systems will be required. In response to the need, a conical nozzle (expansion ratio of 25 and 20° half-angle of divergence) with throat dimensions of 600µm x 300µm has been designed and fabricated with capabilities in thrust magnitude control. The device utilizes the expansion of a silicone membrane, located on the upper surface of the supersonic micro-nozzle throat, as a mechanism to reduce the throat cross sectional area, and consequently vary the nozzle's expansion ratio. The flow through the nozzle, with and without flow control, has been modeled using an analytical one-dimensional isentropic model and a viscous three-dimensional computational fluid dynamics (CFD) model using FLUENT. The ability of the proposed flow control device to affect the flow rate, nozzle efficiency, and thrust output has been determined using CFD. The micro-nozzle has been tested under separation conditions; under these conditions the nozzle performance has been experimentally determined. Furthermore, successful flow control has been demonstrated. Possible future developments for this flow control concept are discussed, which primarily include improvements in fabrication and experimentation techniques.
Library of Congress Subject Headings
Nozzles--Fluid dynamics; Microspacecraft; Space vehicles--Equipment and supplies
Publication Date
2004
Document Type
Thesis
Student Type
Graduate
Degree Name
Mechanical Engineering (MS)
Department, Program, or Center
Mechanical Engineering (KGCOE)
Advisor
Jeffrey Kozak
Advisor/Committee Member
Mark Kempski
Advisor/Committee Member
Kevin Kochersberger
Recommended Citation
Szachta, Christopher J., "Proof of concept design and analysis of active flow control of a supersonic micro-nozzle" (2004). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/7649
Campus
RIT – Main Campus
Plan Codes
MECE-MS