Author

Eyup Cinar

Abstract

Analyzing and understanding human biosignals have been important research areas that have many practical applications in everyday life. For example, Brain Computer Interface is a research area that studies the connection between the human brain and external systems by processing and learning the brain signals called Electroencephalography (EEG) signals. Similarly, various assistive robotics applications are being developed to interpret eye or muscle signals in humans in order to provide control inputs for external devices. The efficiency for all of these applications depends heavily on being able to process and classify human biosignals. Therefore many techniques from Signal Processing and Machine Learning fields are applied in order to understand human biosignals better and increase the efficiency and success of these applications. This thesis proposes a new classifier for biosignal data classification utilizing Particle Swarm Optimization Clustering and Radial Basis Function Networks (RBFN). The performance of the proposed classifier together with several variations in the technique is analyzed by utilizing comparisons with the state of the art classifiers such as Fuzzy Functions Support Vector Machines (FFSVM), Improved Fuzzy Functions Support Vector Machines (IFFSVM). These classifiers are implemented on the classification of same biological signals in order to evaluate the proposed technique. Several clustering algorithms, which are used in these classifiers, such as K-means, Fuzzy c-means, and Particle Swarm Optimization (PSO), are studied and compared with each other based on clustering abilities. The effects of the analyzed clustering algorithms in the performance of Radial Basis Functions Networks classifier are investigated. Strengths and weaknesses are analyzed on various standard and EEG datasets. Results show that the proposed classifier that combines PSO clustering with RBFN classifier can reach or exceed the performance of these state of the art classifiers. Finally, the proposed classification technique is applied to a real-time system application where a mobile robot is controlled based on person's EEG signal.

Library of Congress Subject Headings

Electroencephalography--Data processing; Biosensors--Data processing; Imaging systems in medicine; Classification--Data processing; Computer algorithms

Publication Date

2010

Document Type

Thesis

Department, Program, or Center

Microelectronic Engineering (KGCOE)

Advisor

Sahin, Ferat

Comments

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: RC386.6.E43 C56 2010

Campus

RIT – Main Campus

Share

COinS