Abstract

An elastic cantilever beam under pressure contact with a moving web undergoes self-excited vibration that may lead to unstable and even self destructive behavior. The equations of motion for the system are derived from the principle of virtual work and Hamilton's principle using the techniques of the calculus of variations. The beam, being a continuum with infinite degrees of freedom, is approximated by a model with a finite number of degrees of freedom using Galerkin's method. The characteristic equation for the model is examined to determine its dynamic criterion for stability. A parametric study is performed to determine the effects of the beam properties such as beam length (L), extension (W), thickness (h), elastic modulus (E), stiffness (El), beam inclination angle ([theta]) with respect to moving web, the static and kinematic coefficient of friction ([mu]s). ([mu]k)- The beam response due to the motion of the contacting web is undertaken to evaluate critical properties to be used as guide in the design of stable beam for such applications.

Library of Congress Subject Headings

Elastic solids--Stability; Structural dynamics; Girders--Vibration

Publication Date

1994

Document Type

Thesis

Student Type

- Please Select One -

Department, Program, or Center

Mechanical Engineering (KGCOE)

Advisor

Torok, J.

Advisor/Committee Member

Budynas, R.

Advisor/Committee Member

Hetnarski, R.

Comments

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: QA935.Z53 1994

Campus

RIT – Main Campus

Share

COinS