Abstract
Pool boiling is a stable and efficient method for transferring large quantities of heat. It is employed in a wide range of applications, including steam generation in boilers, petrochemical, pharmaceutical, cryogenic and many other industrial processes. The objective of this work was to investigate the augmentation in the boiling heat transfer rates with an array of open microchannels over a cylindrical tube. In order to develop high performance surfaces, rectangular and V-groove cross-sectional geometry microchannels were fabricated and tested over tubular test sections. These microchannels were manufactured in two configurations: circumferentially around the test section and axially along the length. The effects of the microchannel geometric parameters on pool boiling performance were studied under horizontal and vertical orientations. Twenty uniquely modified microchannel surfaces were designed, fabricated and tested. The best performance was obtained with a circumferential rectangular microchannel test section in the horizontal orientation. A maximum heat transfer coefficient of 129 kW/m2*K was achieved at a heat flux of 1095 kW/m2, while maintaining a wall superheat of 8.5 K. The overall enhancement factors obtained at the maximum heat flux condition, ranged between 1.9 and 3.4 in the horizontal orientation, and 2.1 and 3.1 in the vertical orientation. The critical heat flux for almost all the designed test surfaces was increased by a factor of at least 1.6 over a plain tube. Area normalized results indicated that factors other than area enhancement are responsible for augmenting the heat transfer performance. High-speed videography of bubbles nucleating, growing and departing from the heated surface was performed. The bubble behavior over these open microchannels was analyzed to understand the fundamental mechanism during pool boiling. The bubble interactions in and over the open microchannels, and the liquid rewetting phenomenon greatly influence the heat transfer performance for these surface.
Library of Congress Subject Headings
Heat-transfer media--Fluid dynamics; Heat--Transmission; Ebullition; Microfluidics
Publication Date
2013
Document Type
Thesis
Student Type
Graduate
Degree Name
Mechanical Engineering (MS)
Department, Program, or Center
Mechanical Engineering (KGCOE)
Advisor
Kandlikar, Satish
Recommended Citation
Mehta, Jeet, "Enhanced pool boiling of water with open microchannels over cylindrical tubes" (2013). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/6956
Campus
RIT – Main Campus
Plan Codes
MECE-MS
Comments
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: TP159.H4 M44 2013