Abstract
It was the primary goal (and result) of the presented work to empirically demonstrate CMOS operation (i.e., inverter transfer characteristics) using metallic/Schottky source/drain MOSFETs (SFETs - Schottky Field Effect Transistors) fabricated on silicon-on-insulator (SOI) substrates - a first-ever in the history of SFET research. Due to its candidacy for present and future CMOS technology, many different research groups have explored different SFET architectures in an effort to maximize performance. In the presented work, an architecture known as a "bulk switching" SFET was fabricated using an implant-to-silicide (ITS) technique, which facilitates a high degree of Schottky barrier lowering and therefore an increase in current injection with minimal process complexity. The different switching mechanism realized with this technique also reduces the ambipolar leakage current that has so often plagued SFETs of more conventional design. In addition, these devices have been utilized in a patent pending approach that may facilitate an increase in circuit density for devices of a given size. In other words, for example, it may be possible to achieve circuit density equivalent to 65 nm technology using a 90 nm process, while at the same time preserving or reducing local interconnect density for enhanced overall system speed. Fabrication details and electrical results will be discussed, as well as some initial modeling efforts toward gaining insight into the details of current injection at the metal-semiconductor (M-S) interface. The challenges faced using the ITS approach at aggressive scales will be discussed, as will the potential advantages and disadvantages of other approaches to SFET technology.
Library of Congress Subject Headings
Metal semiconductor field-effect transistors--Design and construction; Metal oxide semiconductors, Complementary--Design and construction; Microelectronics--Design and construction
Publication Date
2006
Document Type
Thesis
Student Type
Graduate
Degree Name
Microelectronic Engineering (MS)
Department, Program, or Center
Microelectronic Engineering (KGCOE)
Advisor
Hirschman, Karl
Advisor/Committee Member
Kurinec, Santosh
Advisor/Committee Member
Rommel, Sean
Recommended Citation
Vega, Reinaldo, "Schottky Field Effect Transistors and Schottky CMOS Circuitry" (2006). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/6493
Campus
RIT – Main Campus
Comments
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: TK7871.95 .V44 2006