Abstract
A state variable approach is developed to simulate the isothermal quasi-static mechanical behavior of elastic- viscoplastic materials subject to small deformations. Modeling of monotonic/cyclic loading, strain-rate effect, work hardening, creep, and stress relaxation are investigated. Development of the constitutive equations is based upon Hooke's law, the separation of the total strain into elastic and plastic quantities, and the separation of work hardening into isotropic and kinematic quantities. The formulation consists of three coupled differential equations; a power law measuring viscoplastic strain-rate and two first order equations for isotropic and kinematic hardening. Derivation of, behavior of, and use of the model are discussed. Actual material data from uniaxial monotonic and cyclic tests is simulated numerically. The formulation, excluding kinematic hardening, is also expanded into multiple dimensions and the compression of a cylinder with constrained ends is solved using the finite element method.
Library of Congress Subject Headings
Deformations (Mechanics)--Mathematical models; Elastoplasticity; Viscoplasticity
Publication Date
12-1-1988
Document Type
Thesis
Department, Program, or Center
Mechanical Engineering (KGCOE)
Advisor
Ghoneim, Hany
Advisor/Committee Member
Gupta, Surendra
Advisor/Committee Member
Kempski, Mark
Recommended Citation
Diehl, Ted, "Modeling of elastic-viscoplastic bahavior and its finite element implementation" (1988). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/5836
Campus
RIT – Main Campus
Comments
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: TA417.6 .D533 1988