Abstract
Many real world materials exhibit complex subsurface scattering of light. This internal light interaction creates the perception of translucency for the human visual system. Translucent materials and simulation of the subsurface scattering of light has become an expected necessity for generating warmth and realism in computer generated imagery. The light transport within heterogenous materials, such as marble, has proved challenging to model and render. The current material models available to digital artists have been limited to homogeneous subsurface scattering despite a few publications documenting success at simulating heterogeneous light transport. While the publications successfully simulate this complex phenomenon, the material descriptions have been highly specialized and far from intuitive. By combining the measurable properties of heterogeneous translucent materials with the defining properties of translucency, as perceived by the human visual system, a description of heterogeneous translucent materials that is suitable for artist use in a film production pipeline can be achieved. Development of the material description focuses on integration with the film pipeline, ease of use, and reasonable approximation of heterogeneous translucency based on perception. Methods of material manipulation are explored to determine which properties should be modifiable by artists while maintaining the perception of heterogenous translucency.
Library of Congress Subject Headings
Digital art--Mathematical models; Light--Scattering--Computer simulation; Light in art--Computer simulation; Motion pictures--Art direction
Publication Date
3-8-2013
Document Type
Thesis
Department, Program, or Center
Computer Science (GCCIS)
Advisor
Bailey, Reynold
Advisor/Committee Member
Carithers, Warren
Recommended Citation
Wieme, Laura, "Perception based heterogeneous subsurface scattering for film" (2013). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/4769
Campus
RIT – Main Campus
Plan Codes
COMPSCI-MS
Comments
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: N7433.8 .W43 2013