Author

Shizhe Shen

Abstract

Defining color tolerances numerically continues to be a topic of intense interest in colorimetry. A technique was developed to evaluate formula performance that incorporated visual uncertainty. In this technique, visual uncertainty was represented by randomized equal color-difference ellipsoids or randomized visual color differences. STRESS, a multivariate statistical tool, was employed to quantify these randomized equal color-difference ellipsoids or visual color differences. The STRESS clouds were composed of the STRESS values between the randomized equal color-difference ellipsoids and T50 equal color-difference ellipsoids, or between the randomized visual color differences and T50 visual color differences where T50 represented visually determined tolerances equivalent to an anchor-pair stimulus. These STRESS values clouds were taken as rulers to evaluate whether one color-difference formula over-, under- or well-fitted a specified color-difference dataset, based on an F-test. This technique is a necessary addition to the current deviation evaluation metrics, e.g., PF/3. In follow-on research, a Euclidean color space was developed with the color-difference formula based on IPT color space for supra-threshold color differences. The color-difference formula has similar chromatic modeling to CIE94. A lightness transformation function was applied to model color difference along lightness. A rotation matrix on the chromatic plane was also applied to achieve better characteristics of the color space. A step-wise optimization was performed to achieve better consistency and remove conflicts between different color-difference datasets. The evaluations include STRESS, F-test, hue constancy and equal color-difference ellipsoid shape. It was shown by the evaluation results that the Euclidean color space could be a potential candidate of a future color model useful for defining industrial color tolerances.

Library of Congress Subject Headings

Colorimetric analysis; Colorimetry--Mathematical models

Publication Date

5-1-2009

Document Type

Thesis

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)

Advisor

Berns, Roy S.

Advisor/Committee Member

Fairchild, Mark

Comments

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: QD113.S44 2009

Campus

RIT – Main Campus

Share

COinS