Author

Peter Wozny

Abstract

Elliptic curve cryptography (ECC) is an increasingly popular method for securing many forms of data and communication via public key encryption. The algorithm utilizes key parameters, referred to as the domain parameters. These parameters must adhere to specific characteristics in order to be valid for use in the algorithm. The American National Standards Institute (ANSI), in ANSI X9.62, provides the process for generating and validating these parameters. The National Institute of Standards and Technology (NIST) has identified fifteen sets of parameters; five for prime fields, five for binary fields, and five for Koblitz curves. The parameter generation and validation processes have several key issues. The first is the fast reduction within the proper modulus. The modulus chosen is an irreducible polynomial having degree greater than 160. Choosing irreducible polynomials of a particular order is less critical since they have isomorphic properties, mathematically. However, since there are differences in performance, there are standards that determine the specific polynomials chosen. The NIST standards are also based on word lengths of 32 bits. Processor architecture, primality, and validation of irreducibility are other important characteristics. The area of ECC that is researched is the generation and validation processes, as they are specified for binary Galois Fields F (2m). The rationale for the parameters, as computed for 32 bit and 64 bit computer architectures, and the algorithms used for implementation, as specified by ANSI, NIST and others, are examined. The methods for fast reduction are also examined as a baseline for understanding these parameters. Another aspect of the research is to determine a set of parameters beyond the 571-bit length that meet the necessary criteria as determined by the standards.

Library of Congress Subject Headings

Curves, Elliptic--Data processing; Data encryption (Computer science); Cryptography--Mathematics

Publication Date

2008

Document Type

Thesis

Department, Program, or Center

Computer Science (GCCIS)

Advisor

Homan, Christopher

Advisor/Committee Member

Lukowiak, Marcin

Comments

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: QA76.9.A25 W69 2008

Campus

RIT – Main Campus

Share

COinS