Abstract

In order to predict the overall perception of image quality it is necessary to first understand and quantify the appearance of images. Just as color appearance modeling evolved from traditional colorimetry and color difference calculations, image appearance modeling evolves from color image difference calculations. A modular framework for the creation of a color image difference metric has been developed and tested using several psychophysical datasets. This framework is based upon traditional CIE color difference equations, and the S-CIELAB spatial extension to the CIELAB color space. The color image difference predictions have been shown to correlate well with experimental data. The color image difference framework was extended predict the overall appearance of images by replacing the CIELAB color space at the heart of the calculations with a color appearance space. An image appearance model maps the physics of complex image stimuli into human perceptions such as lightness, chroma, hue, contrast, sharpness, and graininess. A first generation image appearance model, named iCAM, has been introduced. Via image appearance modeling new techniques for predicting overall image quality, without the need for intimate knowledge of the imaging system design, can be created.

Library of Congress Subject Headings

Imaging systems; Image processing--Digital techniques; Color-printing--Digital techniques; Color computer graphics

Publication Date

5-1-2003

Document Type

Dissertation

Student Type

Graduate

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)

Advisor

Fairchild, Mark

Advisor/Committee Member

Pelz, Jeff

Advisor/Committee Member

Arney, Jon

Comments

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: TA8315 .J646 2003

Campus

RIT – Main Campus

Share

COinS