Abstract
The present work involves the implementation of an efficient optimization procedure for the design of airfoils in viscous flows The scope of the work is limited to low Reynolds number, incompressible, and unstalled fluid flow. Cubic Bezier curves with corresponding polygons are employed to define the airfoil, the vertices of which are used as design variables in the optimization process. Inviscid conditions about the airfoil are determined using a traditional Hess-Smith-Douglas panel method. Boundary layer calculations are subsequently made based on the inviscid results and the solution is updated, thereby accounting for viscous effects. A hybrid Generalized Reduced Gradient/Sequential Quadratic Programming method is used in conjunction with the aerodynamic model, to optimize the airfoils. Results were obtained for maximum lift and minimum drag problems with and without constraints. The results of the optimization were validated using CFD.
Library of Congress Subject Headings
Aerofoils--Aerodynamics--Mathematics; Mathematical optimization; Engineering design
Publication Date
7-1-1995
Document Type
Thesis
Department, Program, or Center
Manufacturing and Mechanical Engineering Technology (CAST)
Advisor
Veketaraman, P.
Advisor/Committee Member
Kochersberger, Kevin
Advisor/Committee Member
Ogut, Ali
Recommended Citation
MacNeill, Robert, "A Numerical optimization technique for the design of airfoils in viscous flows" (1995). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/1294
Campus
RIT – Main Campus
Comments
Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works. Physical copy available through RIT's The Wallace Library at: TL574.A4 M33 1995