Abstract
Robust mapping and localization can be challenging in environments like forests where easily observable landmarks are virtually indistinguishable from each other. In such environments, GPS or robot odometry may also be compromised by the landscape, tree cover, or method of locomotion. Prior work discussed a method for creating geometric hierarchies to describe the relative positions of unlabeled landmarks. Notably, the polygons from these hierarchies were used to perform accurate place recognition from observations containing partial overlap and sensor noise. Here, we use geometric hierarchies to perform robust data association for collections of virtually identical 2D landmarks in direct support of SLAM. Our system, GeoSLAM, utilizes polygon matching to aggregate landmark positions across consecutive observations, reducing the noisiness of input data. We also maintain a global geometric hierarchy of the environment to enable fast and accurate robot pose estimation. Simulation results empirically demonstrate that this system facilitates accurate, real-time localization for robots experiencing significant sensor noise when exploring environments that contain varying densities of indistinguishable landmarks.
Publication Date
7-1-2024
Document Type
Thesis
Student Type
Graduate
Department, Program, or Center
Computer Science, Department of
College
Golisano College of Computing and Information Sciences
Advisor
Zachary Butler
Advisor/Committee Member
Reynold Bailey
Advisor/Committee Member
Fawad Ahmad
Recommended Citation
Castellarin, Daniel, "Geo-SLAM: Using Geometric Hierarchies to Support Localization and Mapping in Forest Environments" (2024). Thesis. Rochester Institute of Technology. Accessed from
https://repository.rit.edu/theses/11822
Campus
RIT – Main Campus