Abstract

Radio Frequency performance of field-effect transistors has been explored in depth, experimented and industrially in use since a long time. Whenever one thinks of transistors which could take us to the regime of more than 1 THz in frequency it would always be the High Electron Mobility Transistors (HEMTS) as the perfect solution to that. The Graphene transistors have been very much in research from 2010 and promise equal results due to their huge potential in mobility. In the Semiconductor Manufacturing And Fabrication Laboratory at the Rochester Institute Of Technology our research group has been designing, fabricating and characterizing the graphene transistors of top-gated and back- gated varieties of which the former has been more explored and characterized because of its potential in high frequency performance. In this thesis characterization of both the top-gated and the back-gated varieties will be discussed in intricate detail with different permutation and combinations in experiments in order to depict the efficiency of these transistors in terms of their frequency characteristics and the possible ways to optimize the mobility and transconductance, thereby changing the hysteresis behaviours of the top-gated transistors. The maximum oscillation frequency has been explored for the top-gated variant where it can be estimated how they are in performance and exhibit unique nature compared to that of the PMOS and the NMOS devices along with this distinctive hysteresis behaviours by application of a polymer on GFETs has been investigated.

Library of Congress Subject Headings

Field-effect transistors--Materials; Graphene; Radio frequency; Hysteresis; Nonvolatile random-access memory

Publication Date

7-5-2023

Document Type

Thesis

Student Type

Graduate

Degree Name

Electrical Engineering (MS)

Department, Program, or Center

Department of Electrical and Microelectronic Engineering (KGCOE)

Advisor

Ivan Puchades

Advisor/Committee Member

James E. Moon

Advisor/Committee Member

Sean L. Rommel

Campus

RIT – Main Campus

Plan Codes

EEEE-MS

Share

COinS